
Computers & Graphics (2020)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Curve guided T-spline skinning for surface and solid generation

Chuanfeng Hua, Jiaming Aia, Hongwei Lina,b,∗

aSchool of Mathematics, Zhejiang University, Hangzhou, Zhejiang province, China
bState Key Lab. of CAD&CG, Zhejiang University, Hangzhou, Zhejiang province, China

A R T I C L E I N F O

Article history:

2008 MSC: 68U05, 97R60

Keywords: T-spline, Surface skinning,
Solid modeling, Iso-geometric analysis

A B S T R A C T

Skinning is an essential technology in geometric modeling. Unlike non-uniform ratio-
nal B-spline (NURBS) skinning, T-spline skinning does not require knot compatibility
of the given cross-sections, and avoids superfluous of control points. In this study, we
present a curve guided T-spline (CGTS) skinning method for surface and solid gener-
ation of high quality, which interpolates the given cross-sections. Guiding curves and
least squares progressive and iterative approximation (LSPIA) method are involved in
the CGTS skinning. Specifically, the guiding curves provide a visually pleasing shape
for the skinned surface and solid, and the LSPIA method simplifies the iterative pro-
cedure, ensures the fitting accuracy, and shape preservation. On one hand, the CGT-
S surface skinning generates a visually pleasing and fairing skinned T-spline surface,
which avoids the wiggle and crease problems. On the other hand, the CGTS solid
skinning with optimization generates a trivariate T-spline solid with high quality. To
meet the requirement of iso-geometric analysis (IGA) for the skinned T-spline solid,
an optimization approach is employed in the solid skinning to improve the quality of
the skinned T-spline solid. Finally, the experimental examples presented in this paper
demonstrate the effectiveness and efficiency of the CGTS skinning method.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Surface skinning, also known as lofting, is a process of con-2

structing a surface from a set of cross-sections [1], which has3

been widely used in shipbuilding, automobile, and aviation in-4

dustry [2]. The lofting can be traced back to the period of5

manual design. In the early works of hull design, designers6

usually took sample points on each cross-section of the hull,7

and subsequently, either interpolated or approximated the sam-8

ple points by non-uniform rational B-spline (NURBS) curves,9

called cross-sections. Therefore, a surface is constructed by10

skinning the cross-sections.11

As NURBS surface is becoming an industry standard for rep-12

resenting freeform shapes, it is a common process to generate13

∗Corresponding author.
e-mail: hwlin@zju.edu.cn (Hongwei Lin)

skinned NURBS surfaces [3] from a set of cross-sections. Usu- 14

ally, the cross-sections represented by NURBS have different 15

degrees and independent knot vectors. To solve the incompat- 16

ibility, degree elevation and knot insertion are employed [4], 17

resulting in the explosion of knots and control points. 18

Sederberg et al. [5] presented T-spline as a generalization of 19

NURBS, giving more flexibility in representing complex sur- 20

face shapes with fewer control points than NURBS surfaces. 21

Therefore, some T-spline surface skinning methods are devel- 22

oped to overcome the knot compatibility problem. However, 23

wiggles will appear on the skinned surface if common knots 24

between the adjacent curves are too few [6], and creases are un- 25

avoidably generated by the improved T-spline surface skinning 26

method [7]. 27

In this study, a curve guided T-spline (CGTS) skinning 28

method for surface and solid generation of high quality is pre- 29

sented, thus overcoming the knot compatibility problem and in- 30
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terpolating all the given cross-sections. The CGTS surface skin-1

ning method is implemented by the following operations. First,2

an initial T-mesh is constructed by inserting intermediate cross-3

sections to the given cross-sections. In order to determine the4

best positions for the control points of the intermediate cross-5

sections, guiding curves are introduced to provide a fair shape6

of the given cross-sections along the longitudinal direction.7

Subsequently, some data points are sampled uniformly on the8

guiding curves, which are fitted with the skinned T-spline sur-9

face by several rounds of least squares progressive and iterative10

approximation (LSPIA) [8, 9]. Meanwhile, the control points11

of the T-spline surface are updated after each rounds of LSPIA,12

according to the interpolated conditions, which guarantees that13

the skinned surface interpolates the given cross-sections. Final-14

ly, a visually pleasing and fairing skinned T-spline surface is15

generated, avoiding the wiggle and crease problems. The CGT-16

S solid skinning method is implemented similarly by interpo-17

lating the given cross-sectional T-spline surfaces. Furthermore,18

we adopt an optimization approach to improve the quality of the19

skinned T-spline solid. To summarize, the main contributions of20

this study are as follows:21

• Guiding curves are applied for providing a visually pleas-22

ing shape for the skinned surface and solid.23

• LSPIA method ensures the fitting accuracy and the stabil-24

ity of iterations.25

• CGTS skinning method interpolating the given cross-26

sections for high quality surface and solid generation is27

proposed.28

The remainder of this paper is organized as follows. In Sec-29

tion 1.1, we review related work on the surface skinning, sol-30

id modeling and iterative fitting. In Section 2, preliminaries31

on T-splines and T-spline surface skinning are introduced. The32

CGTS surface skinning method with high fairness is presented33

in Section 3. The CGTS solid skinning method with optimiza-34

tion is described in Section 4. In Section 5, some experimental35

examples are illustrated to demonstrate the effectiveness and36

efficiency of the CGTS skinning method. Finally, Section 637

concludes the paper.38

1.1. Related work39

Surface skinning: In general, surface skinning method-40

s are mainly classified into two categories, namely approx-41

imation methods [4, 10, 11, 12] and interpolation methods42

[1, 3, 6, 7, 13]. The approximation methods can approximate43

the skinned surface within given error bounds. The given curves44

can be rebuilt within the error bounds, and the explosion of the45

control points can be removed. The interpolation methods usu-46

ally are applied when generating an interpolatory skinned sur-47

face.48

As a generalization of NURBS surfaces, a T-spline sur-49

face permits T-junctions in its T-mesh, which enables local50

refinement[5]. Numerous T-spline surface skinning method-51

s were proposed to overcome the knot compatibility problem52

[12, 6, 14, 7]. Yang and Zheng [12] presented an approximate53

T-spline skinning method, which fitting the input rows of data54

points within a prescribed tolerance. An interpolation T-spline 55

skinning method was developed by Nasri et al. [6] by inserting 56

an intermediate cross-section between the given cross-sections. 57

However, the wiggle problem will appear if common knots be- 58

tween the adjacent curves are too few. The surface skinning 59

method was extended to periodic T-spline in semi-NURBS for- 60

m by Li et al. [14], who addressed the wiggle problem and 61

reduced the wiggle effect using 4-point interpolatory subdivi- 62

sion scheme [15] to derive the intermediate cross-sections. O- 63

h et al. [7] provided a fundamental solution to avoid wiggles 64

by adding two intermediate cross-sections, while major crease 65

problem occurs on the skinned surface. Engleitner and Jüttler 66

[13] applied the framework of patchwork B-splines to the con- 67

struction of interpolated skinned surfaces, which not only re- 68

duces the resulting data volume but also limits the propagation 69

of derivative discontinuities. 70

Solid modeling: NURBS and T-spline solid modeling meth- 71

ods are developed mainly for producing the three-dimensional 72

physical domain in iso-geometric analysis (IGA) [16]. Specif- 73

ically, Zhang et al. [17] introduced a skeleton-based method 74

of generating NURBS solids through analyzing arterial blood 75

flow in IGA. A cylinder-like trivariate B-spline solid was gen- 76

erated through harmonic-function-based volumetric parameter- 77

ization [18]. Aigner et al. [19] presented a variational frame- 78

work for generating NURBS solid by parameterizing a swept 79

volume based on the given boundary conditions and guiding 80

curves. Optimization approaches have been developed for fill- 81

ing boundary-represented models to produce trivariate B-spline 82

solids with positive Jacobian value [20, 21]. Moreover, Lin et 83

al. [22] presented a discrete volume parameterization method 84

for tetrahedral mesh models and an iterative fitting algorith- 85

m for trivariate B-spline solids generation. The method was 86

improved [23, 24] by applying pillow operation and geomet- 87

ric optimization to guarantee the generated B-spline solids with 88

positive Jacobian value. 89

Due to the flexibility of T-splines in representing complex 90

shapes with fewer control points than NURBS, T-spline sol- 91

id modeling methods have been intensively studied. Escobar 92

et al. [25] constructed T-spline solids using fitting triangular 93

mesh models with zero-genus. Moreover, a mapping-based 94

rational T-spline solid construction method was presented for 95

zero-genus topology as well [26]. Wang et al. [27] proposed a 96

method of constructing T-spline solids using boundary triangu- 97

lations with an arbitrary genus topology by polycube mapping. 98

Iterative fitting: The progressive-iterative approximation 99

(PIA) was first proposed in Refs. [28, 29], which is an iterative 100

fitting method with explicit geometric meanings, advancing the 101

handling of the geometric problems in the field of geometric de- 102

sign. In Ref. [30], the PIA method was proved to be convergent 103

for NURBS. A local format of the PIA method was developed 104

in [31]. Subsequently, the PIA format was extended to subdi- 105

vision surface fitting [32]. To avoid the limitation of the PIA 106

method that the number of the control points must be equal to 107

that of the data points, some extended iterative fitting formats 108

were developed to approximate the given data points, namely, 109

extended PIA (EPIA) [33] and LSPIA [8, 9]. 110
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2. Preliminaries1

Preliminaries on T-spline, LSPIA with T-splines and T-spline2

surface skinning are introduced in this section.3

2.1. T-splines4

For a T-spline surface, each control point Pi, i = 0, 1, · · · ,m,
corresponds to a basis function:

Bi(u, v) =
ωiRi(u, v)∑m

j=0 ω jR j(u, v)
, i = 0, 1, · · · ,m. (1)

In Eq.(1), ωi are nonnegative weights, which are set to 1 in the
study according to the previous work [6, 7], and Ri(u, v) are the
blending functions,

Ri(u, v) = N[ui0, ui1, ui2, ui3, ui4](u)M[vi0, vi1, vi2, vi3, vi4](v),
(2)

where N[ui0, ui1, ui2, ui3, ui4](u) and M[vi0, vi1, vi2, vi3, vi4](v) are
cubic B-spline basis function defined on the u-directional and v-
directional knot vectors, respectively,

ui = [ui0, ui1, ui2, ui3, ui4], vi = [vi0, vi1, vi2, vi3, vi4]. (3)

The local knot vectors ui and vi (Eq.(3)) can be determined
by surrounding knots with the ray-method in the T-mesh [34].
Therefore, after obtaining the basis functions Bi(u, v), i =

0, 1, · · · ,m, corresponding to the control points Pi, the T-spline
surface S (u, v) can be generated.

S (u, v) =

m∑
i=0

PiBi(u, v), i = 0, 1, · · · ,m. (4)

Additionally, a T-spline solid can be represented by

V(u, v,w) =

m∑
i=0

PiBi(u, v,w), i = 0, 1, · · · ,m, (5)

where Bi(u, v,w) are the basis functions, which can be defined5

similarly using the above formulas.6

2.2. LSPIA with T-splines7

The LSPIA is performed for fitting a given set of data points8

by a T-spline surface or solid. In each iterative step, difference9

vectors related to the data points are calculated, and then ad-10

justing vector for each control point is calculated, which is a11

weighted sum of the difference vectors. At last, the new T-12

spline surface or solid is obtained by adding the adjusting vec-13

tors to the control points. The iterations are terminated when14

either the fitting accuracy meets a preset accuracy or the num-15

ber of iterations exceeds a preset iteration time.16

Take a T-spline surface fitting by the LSPIA as an example.
We start with an initial T-spline surface and suppose that the
iteration has been performed for k steps, and the k-th T-spline
surface S (k)(u, v) is generated,

S (k)(u, v) =

m∑
i=0

P(k)
i Bi(u, v).

One iteration step for producing S (k+1)(u, v) from S (k)(u, v) in- 17

cludes the following operations. 18

First, the difference vector for each data point is calculated,

δ(k)
l = Ql − S (k)(ul, vl),

where Ql, l = 0, 1, · · · , L with parameters (ul, vl) are the data
points. Each vector δ(k)

l is distributed to the control points P(k)
i ,

forming the adjusting vector for each control point,

∆
(k)
i =

∑
l∈Li

Bi(ul, vl)δ
(k)
l∑

l∈Li
Bi(ul, vl)

,

where Li is the index set of l such that Bi(ul, vl) , 0. Next,
the control point P(k+1)

i for the (k + 1)-th surface is obtained by
adding the vector ∆

(k)
i to the control point P(k)

i ,

P(k+1)
i = P(k)

i + ∆
(k)
i .

Thus, the (k + 1)-th T-spline surface is generated. 19

These iterations are terminated when either the fitting accura- 20

cy meets a preset accuracy or the number of iterations exceeds 21

a preset iteration time. The convergence of the LSPIA method 22

has been proven in [8] 23

2.3. T-spline surface skinning 24

The T-spline surface skinning method interpolating the giv- 25

en cross-sections was first proposed by Nasri et al. [6], ab- 26

breviated as Nasri’s skinning method. Subsequently, Oh et al. 27

[7] enhanced the skinning method to avoid wiggle problem by 28

adding one more intermediate cross-section between the given 29

cross-sections, abbreviated as Oh’s skinning method. The two 30

algorithms are implemented by the construction of T-mesh and 31

calculation of control points. 32

Construction of T-mesh: Given a set of ordered cross-
sections represented by B-splines with independent knot vec-
tors. The given curves are represented as:

Ci(u) =
∑
j∈Ii

V i
jN

i
j(u), i = 0, · · · , n, (6)

where Ii, i = 0, · · · , n are the index sets of the control points 33

of the given curves, V i
j are the control points and N i

j are the 34

corresponding B-spline basis functions. The parameters of the 35

given curves in v-direction can be determined by the chord 36

length parameterization [3]. Moreover, to interpolate the given 37

cross-sections, one or two intermediate cross-sections are added 38

between the given cross-sections. For the case that adding 39

one intermediate cross-section, the knots of the added cross- 40

sections are the common knots of two adjacent given cross- 41

sections (Fig. 1(a)). For the other case, the knots of the added 42

cross-sections are consistent with the knots of the nearest given 43

cross-section (Fig. 1(b)). Following this, a control mesh is con- 44

structed for the given cross-sections and the added intermediate 45

cross-sections. Therefore, if two adjacent cross-sections have a 46

common knot, the longitudinal edge is connected. After all lon- 47

gitudinal edges are connected, the initial T-mesh is constructed 48

completely, as shown in Fig. 1. In this study, the initial T-mesh 49

of the CGTS skinning method is constructed in the same way. 50
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Fig. 1. Cross-sections to be skinned for pre-image of T-mesh, where
the black lines are the given cross-sections to be interpolated, the
green lines are the added intermediate cross-sections, and the or-
ange lines are the longitudinal edges. (a) One intermediate cross-
section between the given cross-sections. (b) Two intermediate
cross-sections between the given cross-sections.

Calculation of control points: Suppose that S (u, v) is the
skinned T-spline surface. The control points in the T-mesh are
calculated for interpolating the given cross-sections by the fol-
lowing interpolation conditions,

Ci(u) = S (u, vi), i = 0, 1, · · · , n, (7)

where vi is the v-directional parameter of the i-th given curve.
As the interpolation of the curve is affected by two adjacent
curves, Eq. (7) can be rewritten as:∑
j∈Ii

V i
jN

i
j(u) =

∑
j∈Ii up

W i up
j N i up

j (u)Mi up
j (vi) +

∑
j∈Ii

W i
jN

i
j(u)Mi

j(v
i)

+
∑

j∈Ii down

W i down
j N i down

j (u)Mi down
j (vi),

(8)

where W i up
j , W i

j, and W i down
j are the control points of Ci up, Ci,1

and Ci down, respectively, which composite the control points of2

the T-spline surface. It is noteworthy that the two first and last3

given curves are interpolated with multiple knots. For the con-4

trol points of Ci up, Ci, or Ci down, the v-directional knot vectors5

are the same. Therefore, Mi up
j (vi), Mi

j(v
i), and Mi down

j (vi) can6

be replaced by three constants, ai, bi, and ci, respectively.7

For adding one intermediate cross-section between the given
cross-sections, knot intersection to the curves Ci up and Ci down

can ensure that the basis functions N i up
j (u) and N i down

j (u) co-
incide with N i

j(u). Therefore, we can obtain a system of equa-
tions,

V i
j = aiW̃ i up

j + biW i
j + ciW̃ i down

j , j ∈ Ii, i = 1, · · · , n − 1, (9)

where W̃ i up
j and W̃ i down

j are control points calculated from 8

knot insertion to the added intermediate cross-sections Ci up and 9

Ci down, respectively. 10

For adding two intermediate cross-sections between the giv-
en cross-sections, the u-directional knot vectors of Ci up and
Ci down are the same as Ci and the basis functions N i up

j (u) and
N i down

j (u) coincide with N i
j(u). Thus, we have,

V i
j = aiW i up

j + biW i
j + ciW i down

j , j ∈ Ii, i = 1, · · · , n− 1. (10)

Consequently, replacing V i
j by W i

j, the skinned T-spline sur- 11

face that interpolates the given cross-sections is generated. 12

However, in case of Nasri’s skinning method, which adds one 13

intermediate cross-section between the given cross-sections, 14

wiggles will appear on the skinned T-spline surface if the giv- 15

en cross-sections are not sufficiently compatible, as shown 16

in Fig. 2(e). In order to reduce the wiggles in the skinned 17

surface, Oh’s skinning method, which adds two intermediate 18

cross-sections, was proposed. However, the intermediate cross- 19

sections are added by linear interpolation, causing major crease 20

problems on the skinned surface, as shown in Fig. 2(f). 21

3. CGTS surface skinning with high fairness 22

Unlike the approximate T-spline skinning method proposed 23

by Yang and Zheng [12], the given cross-sections can be inter- 24

polated by the proposed CGTS skinning method in this study. 25

The whole algorithm for the CGTS surface skinning method is 26

illustrated in Algorithm 1. Specifically, given a set of ordered 27

cross-sections as input, a series of iso-parametric points are 28

sampled on the given cross-sections. By linearly interpolating 29

the iso-parametric points along the longitudinal direction, some 30

linear interpolated points on the intermediate cross-sections are 31

generated. The intermediate cross-sections are initialized by 32

fitting the interpolated points. Meanwhile, the iso-parametric 33

points are also used to produce several guiding curves, which 34

can not only result in avoiding the wiggles and creases, but al- 35

so provide a visually pleasing shape of the skinned surface. As 36

illustrated in Fig. 3, the intermediate cross-sections and guid- 37

ing curves are constructed. Then we sample some points on the 38

guiding curves as data points to fit with the skinned T-spline sur- 39

face. The LSPIA method is invoked in the data fitting, and the 40

control points W i
j are updated by the interpolation equations (9) 41

or (10), after LSPIA. Therefore, a visually pleasing skinned T- 42

spline surface without wiggles and creases is generated. 43

In this study, two approaches to implement the CGTS surface 44

skinning method are provided, including adding one or two in- 45

termediate cross-sections between the given cross-sections, ab- 46

breviated as CGTS with one mid-section and CGTS with two 47

mid-sections. The details of the CGTS surface skinning method 48

are elucidated in the following sections. 49
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Wiggles and creases appear on the skinned T-spline surfaces (Torus), where the color represents the distribution of the mean
curvature. (a) Pre-image of the interpolated control mesh. (b) Pre-image of the T-mesh generated using Nasri’s skinning method. (c) Pre-
image of the T-mesh generated using Oh’s skinning method. (d) The given cross-sections. (e) The skinned T-spline surface with wiggles
generated using Nasri’s skinning method. (f) The skinned T-spline surface with creases generated using Oh’s skinning method.

(a)

: Given cross-section

: Added intermediate cross-section

: Control polygon of given cross-section

: Guiding curve

: Control point of added cross-section

: Control point of given cross-section

: Linear interpolated point

: Iso-parametric point

: Control polygon of added cross-section

(b)

Fig. 3. Construction of the intermediate cross-sections and guiding curves from the iso-parametric points. (a) One added intermediate
cross-section. (b) Two added intermediate cross-sections.

3.1. Guiding curve1

The guiding curve is an important factor affecting the shape2

of the skinned surface. In order to ensure that the skinned3

T-spline surface is generated with high fairness, we sample a4

series of iso-parametric points on the given cross-sections to5

produce several interpolating B-spline curves, called guiding6

curves.7

Suppose that Qi, i = 0, 1, · · · , n are a set of ordered iso-
parametric points along the longitudinal direction, a cubic B-
spline curve interpolating the data points can be uniquely de-
termined if the knots and two boundary conditions are given in
advance [35]. An interpolating B-spline curve can be represent-
ed by the following formula,

C(v) =

n+2∑
i=0

PiNi,3(v), (11)

with knot vector v = {v0, v0, v0, v0, v1, · · · , vn−1, vn, vn, vn, vn}

obtained from the T-mesh. In our implementation, the boundary
conditions are taken as that, the second-order derivatives of the
interpolating curve at two ends are both zero, i.e., P

′′

(v0) = 0
and P

′′

(vn) = 0. Then, the control points Pi of the interpolating
B-spline curve can be calculated by the following equations,

Q j = C(v j) =

n+2∑
i=0

PiNi,3(v j), j = 0, 1, · · · , n,

P0 =
v2 + v1 − 2v0

v2 − v1 P1 −
v1 − v0

v2 − v0 P2,

Pn+2 =
vn−1 − vn

vn − vn−2 Pn +
2vn − vn−1 − vn−2

vn − vn−2 Pn+1.

(12)

By solving these linear equations, the interpolating B-spline 8

curve can be generated. Therefore, a set of guiding curves rep- 9

resented by the interpolating B-splines can be constructed. 10
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Algorithm 1 CGTS surface skinning method
Input: A set of cross-sections represented by B-splines and a prede-
fined fitting iteration time τ and precision ε0.
Output: A fairing skinned T-spline surface without wiggles and creas-
es.

1. Sample iso-parametric points on the given cross-sections;
2. Insert the intermediate cross-sections;
3. Construct the initial T-mesh and the initial skinned T-spline sur-

face;
4. Produce the guiding curves by interpolating the iso-parametric

points;
5. Sample data points uniformly on the guiding curves;
6. α← 0, β← 0, ε← 1;
7. while ε > ε0 and α ≤ τ do //α-th round of LSPIA
8. while ε > ε0 and β ≤ τ do //β-th step of iteration in the α-th

round of LSPIA
9. Data fitting by the LSPIA method;

10. β← β + 1;
11. end while
12. Update the control points for interpolating the given curves;
13. α← α + 1, β← 0;
14. end while

3.2. Iterative fitting algorithm1

The guiding curves provide a visually pleasing shape for the2

skinned T-spline surface. As a result, only by fitting with the3

guiding curves can the skinned T-spline surface achieve high4

fairness. We employ the LSPIA method to fit the skinned T-5

spline surface with the guiding curves, by fitting with the data6

points sampled on the guiding curves. Meanwhile, the skinned7

T-spline surface needs to interpolate the given cross-sections. In8

this study, the iterative fitting is implemented by several rounds9

of LSPIA, and after each rounds of LSPIA the control points10

are updated for interpolation.11

Denote that the T-spline surface generated by the β-th step of
iteration in the α-th round of LSPIA is S (α,β)(u, v). Assume that
Ql, l = 0, 1, · · · , L with parameters (ul, vl) are the data points
sampled on the guiding curves. Start with an initial T-spline
surface S (0,0)(u, v), which can be constructed from the initial
T-mesh. Suppose that the iteration has been performed for β
steps in α-th round of LSPIA, and the (α, β)-th skinned T-spline
surface S (α,β)(u, v) is generated,

S (α,β)(u, v) =

m∑
i=0

P(α,β)
i Bi(u, v). (13)

And the (α, β + 1)-th skinned T-spline surface S (α,β+1)(u, v) is12

produced by the following operations.13

The difference vector for each data point is calculated,

δ
(α,β)
l = Ql − S (α,β)(ul, vl). (14)

Each difference vector δ(α,β)
l distributes the weighted vector

Bi(ul, vl)δ
(α,β)
l to the control point P(α,β)

i , whose corresponding
basis function is not equal to zero. Consequently, the adjusting

vector for each control point is generated,

∆
(α,β)
i =

∑
l∈Li

Bi(ul, vl)δ
(α,β)
l∑

l∈Li
Bi(ul, vl)

, (15)

where Li is the index set of l such that Bi(ul, vl) , 0. Therefore,
the control points of the (α, β + 1)-th skinned T-spline surface
can be formed,

P(α,β+1)
i = P(α,β)

i + ∆
(α,β)
i . (16)

The iterations in the α-th round of LSPIA are terminated 14

when either ε =

∣∣∣∣∣∣∣
∑

l

∥∥∥∥δ(α,β+1)
l

∥∥∥∥2

∑
l

∥∥∥∥δ(α,β)
l

∥∥∥∥2 − 1

∣∣∣∣∣∣∣ < ε0 or the number of itera- 15

tions exceeds a predefined fitting iteration time, τ. After each 16

rounds of the LSPIA, the control points are updated by Eq. (9) 17

or Eq. (10) for interpolating the given cross-sections. Now, 18

the (α + 1, 0)-th T-spline surface is obtained. Define the error 19

of the α-th round of data fitting as
∑

l

∥∥∥δ(α)
l

∥∥∥2
=

∑
l

∥∥∥δ(α+1,0)
l

∥∥∥2
. 20

The whole iterative fitting procedure is terminated when either 21

ε =

∣∣∣∣∣∣∣
∑

l

∥∥∥∥δ(α)
l

∥∥∥∥2

∑
l

∥∥∥∥δ(α−1)
l

∥∥∥∥2 − 1

∣∣∣∣∣∣∣ < ε0 or the number of rounds exceeds τ. In 22

our implementation, we take ε0 = 10−4 and τ = 20. 23

The experimental results are showing that the iterative fitting 24

method in this study has the approximate convergence as the 25

LSPIA method. We have demonstrated the CGTS surface skin- 26

ning method to skin the same curves (Fig. 2(d)), and the average 27

fitting errors
∑

l

∥∥∥∥δ(s,t)
l

∥∥∥∥2

L+1 with respect to iteration counts are shown 28

in Fig. 4. After each rounds of LSPIA, the control points are 29

updated for interpolation, and the curves of the iteration counts 30

versus average fitting error will appear a peak. However, as the 31

iteration goes on, the peak becomes smaller than before and the 32

average fitting error converges gradually. 33
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Iteration counts versus average error

CGTS with one mid-section
CGTS with two mid-sections

Fig. 4. Iteration counts versus average error. The red circles are the
average errors after updating the control points for interpolation.

The skinned surfaces generated by the CGTS surface skin- 34

ning method are shown in Fig. 5. Our developed surface skin- 35

ning method obviously improves the quality of the skinned T- 36

spline surface (Figs. 5(c) and 5(d)), which removes the wig- 37

gles(Fig. 2(e)) and creases(Fig. 2(f)). Fig. 5(a) presents the 38

guiding curves constructed by the given cross-sections with C2
39

continuity. Fig. 5(b) shows the data points sampled on the guid- 40

ing curves, which keep the shape of the guiding curves. By 41
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fitting to the data points, the skinned T-spline surfaces are gen-1

erated. Therefore, the quality of the skinned T-spline surface in2

Fig. 5(c) is better than that of the T-spline surface in Fig. 2(f)3

with fewer control points. Additionally, the skinned T-spline4

surface in Fig. 5(d) is fairest than the other skinned surfaces.5

And statistical data are listed in Tables 1 and 2.6

(a) (b)

(c) (d)

Fig. 5. Skinned surfaces generated by the CGTS skinning method
with mean curvature distribution (Torus). (a) The given cross-
sections (curves in red) and the guiding curves (curves in blue).
(b) The data points sampled on the guiding curves. (c) CGTS with
one mid-section. (d) CGTS with two mid-sections.

4. CGTS solid skinning with optimization7

With the advent of iso-geometric analysis (IGA), which is8

a numerical analysis method based on spline theory, creating9

spline solids efficiently for IGA is becoming an urgent problem10

in the field of solid modeling. In this study, the CGTS solid11

skinning method is developed. Given a set of ordered cross-12

sectional surfaces, and skinning them with T-splines, a trivariate13

T-spline solid can be generated, which interpolates the given14

T-spline surfaces. Furthermore, due to the fact the Jacobian15

value of every point in the spline solid for simulation needs to be16

greater than zero in IGA. an optimization approach is employed17

to improve the quality of the skinned T-spline solid.18

The whole algorithm for the CGTS solid skinning method is19

illustrated in Algorithm 2. Specifically, given a set of ordered20

cross-sectional T-spline surfaces, a series of iso-parametric21

points are sampled on the given cross-sections. Similar to the22

surface skinning, several intermediate cross-sections are gen-23

erated and added into the given cross-sections. In this study,24

two intermediate cross-sections are added between the given25

cross-sections, so that the skinned T-spline solid can achieve26

high quality. Then, the initial T-mesh and initial T-spline solid27

are constructed. Meanwhile, by interpolating the iso-parametric28

points, the guiding curves running through all the cross-sections29

are produced. Then we sample some data points on the guid-30

ing curves, and optimize them in order to generate the skinned31

T-spline solid with high quality. More concretely, a stitched32

B-spline solid is constructed by fitting the data points, and the33

stitched B-spline solid is optimized. Finally, we resample the34

B-spline solid at the same parameters of the data points to ob- 35

tain the optimized data points. Therefore, by fitting to the op- 36

timized data points and interpolating the given cross-sections, 37

the T-spline solid with high quality is generated. 38

Algorithm 2 CGTS solid skinning method
Input: A set of cross-sections represented by T-splines and a prede-
fined fitting iteration times τ and precision ε0.
Output: A skinned T-spline solid with high quality.

1. Sample iso-parametric points on the given cross-sectional T-
spline surfaces;

2. Insert two intermediate cross-sections between the given cross-
sections;

3. Construct the initial T-mesh and the initial skinned T-spline solid;
4. Produce the guiding curves by interpolating the iso-parametric

points;
5. Sample data points uniformly on the guiding curves for con-

structing a stitched B-spline solid;
6. Optimize the stitched B-spline solid and resample data points

from the B-spline solid;
7. α← 0, β← 0, ε← 1;
8. while ε > ε0 and α ≤ τ do //α-th round of LSPIA
9. while ε > ε0 and β ≤ τ do //β-th step of iteration in the α-th

round of LSPIA
10. Data fitting by the LSPIA method;
11. β← β + 1;
12. end while
13. Update the control points for interpolating the given sur-

faces;
14. α← α + 1, β← 0;
15. end while

4.1. Solid skinning with two intermediate surfaces 39

Suppose that S i(u, v), i = 0, 1, · · · , n are the given cross-
sectional surfaces, S i up(u, v) and S i down(u, v) are two interme-
diate cross-sectional surfaces adjacent to S i(u, v). The skinned
T-spline solid V(u, v,w) can be generated from the CGTS solid
skinning method, and the control points in the T-mesh can be
calculated by the following interpolation conditions,

S i(u, v) = V(u, v,wi), i = 0, 1, · · · , n, (17)

where wi is the parameter of the i-th surface in the w-direction,
which can be calculated by the chord length parameterization.
Similar to the surface skinning method which adds two interme-
diate cross-sections between the given cross-sections, we can
also get a system equations,

V i
j = aiW i up

j + biW i
j + ciW i down

j , j ∈ Ii, i = 1, · · · , n− 1, (18)

where V i
j, j ∈ Ii are the control points in the T-mesh of the 40

i-th given cross-sectional T-spline surface, and W i up
j , W i

j and 41

W i down
j are the control points of the cross-sections, which com- 42

posite the control points of the skinned T-spline solid. By re- 43

placing V i
j with W i

j, the given cross-sections are interpolated. 44

Analogously, the two first and last given T-spline surfaces are 45

interpolated with multiple knots. 46
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4.2. Optimization1

To achieve the purpose that the skinned T-spline solid is gen-2

erated with high quality, the data points are optimized by the3

following operations. Several connected B-spline solids are4

constructed between the given cross-sectional surfaces by fit-5

ting to the data points. The adjacent B-spline solids are C0
6

continuous along the common boundary surface. After opti-7

mizing each B-spline solid independently, a stitched B-spline8

solid with high quality is constructed. Therefore, it is needed to9

resample the data points on the stitched B-spline solid with the10

same parameters, which are fitted with the T-spline solid.11

The details of the optimization for a B-spline solid are illus-
trated as follows. First, a B-spline solid is represented as,

H(u, v,w) =

I∑
i

J∑
j

K∑
k

Hi, j,kNi,p(u)N j,q(v)Nk,r(w), (19)

where Hi jk, i = 0, 1, · · · , I, j = 0, 1, · · · , J, k = 0, 1, · · · ,K are12

control points, and Ni,p(u), N j,q(v) and Nk,r(w) are the B-spline13

basis functions of degree p, q, r in the u, v,w-direction, respec-14

tively. In this study, tri-cubic tensor product B-spline is adopt-15

ed.16

Denote the difference vectors as

Tu
i jk =

Hi+1, j,k − Hi, j,k∥∥∥Hi+1, j,k − Hi, j,k

∥∥∥ ,Tv
i jk =

Hi, j+1,k − Hi, j,k∥∥∥Hi, j+1,k − Hi, j,k

∥∥∥ ,
Tw

i jk =
Hi, j,k+1 − Hi, j,k∥∥∥Hi, j,k+1 − Hi, j,k

∥∥∥ ,
Therefore, the Jacobian value of the B-spline solid is,

J(u, v,w) = Hu(u, v,w) · (Hv(u, v,w) × Hw(u, v,w))

=
∑
Iu

∑
Iv

∑
Iw

αIuIvIw

[
Tu

iu juku
· (Tv

iv jvkv
× Tw

iw jwkw
)
]

BIu (u)BIv (v)BIw (w),

where Iu = (iu, iv, iw),Iv = ( ju, jv, jw),Iw = (ku, kv, kw) are
index sets, αIuIvIw > 0, and,

BIu (u) = Bp−1
iu

(u)Bp
iv

(u)Bp
iw

(u), BIv (v) = Bq
ju

(v)Bq−1
jv

(v)Bq
jw

(v),

BIw (w) = Br
ku

(w)Br
kv

(w)Br−1
kw

(w).

If Tu
iu juku

· (Tv
iv jvkv
× Tw

iw jwkw
) > 0 is ensured, the Jacobian values17

of the B-spline solid are all positive [20].18

Denote the unit vectors as,

Tu =

∑
i, j,k Tu

i jk∥∥∥∥∑i, j,k Tu
i jk

∥∥∥∥ , Tv =

∑
i, j,k Tv

i jk∥∥∥∥∑i, j,k Tv
i jk

∥∥∥∥ , Tw =

∑
i, j,k Tw

i jk∥∥∥∥∑i, j,k Tw
i jk

∥∥∥∥ .
In this study, the optimization is formulated as the minimiza-

tion of several energy functions employed in Ref. [23].

minHi, j,k E = (1−µ−ν)E f it +µ(Eu +Ev +Ew)+ν(Euv +Euw +Evw),
(20)

where µ, ν ∈ [0, 1] are weights. The objective function is eluci-19

dated in detail as follows,20

1. Fitting precision to the data points.

E f it =

Nl∑
l=0

‖H(ul, vl,wl) − Ql‖
2 ,

where Ql, l = 0, 1, · · · ,Nl are the data points sampled on21

the guiding curves.22

2. Validity improvement for the B-spline solid. 23

• Difference vectors in the same parameter direction
are as parallel to each other as possible.

Eu =
1

Nu

∑
i, j,k

(1 − Tu
i jk · T

u), Ev =
1

Nv

∑
i, j,k

(1 − Tv
i jk · T

v),

Ew =
1

Nw

∑
i, j,k

(1 − Tw
i jk · T

w),

where Nu,Nv,Nw are the number of the vectors 24

Tu
i jk,T

v
i jk,T

w
i jk, respectively. 25

• Difference vectors in different parameter directions
are as perpendicular to each other as possible.

Euv = (Tu·Tv)2, Euw = (Tu·Tw)2, Evw = (Tv·Tw)2.

As shown in Fig. 6, given a set of ordered cross-sectional 26

surfaces (Fig. 6(a)) as the input to the CGTS solid skinning al- 27

gorithm, a trivariate T-spline solid (Fig. 6(b)) is generated, and 28

the mesh generated from the knots is drawn on the solid. We 29

can see the interpolation of the given surfaces from a transpar- 30

ent solid in Fig. 6(c). In the cut-away view (Fig. 6(d)) of the 31

iso-parametric mesh, the interior of the T-spline solid can be 32

seen clearly. The statistical data are listed in Table 3. 33

5. Implementation, results and discussions 34

The CGTS skinning method is implemented using the C++ 35

programming language and tested on a PC with a 3.60 GHz i7- 36

4790 CPU and 16 GB RAM. In this section, some examples are 37

presented, and implementation details are discussed. 38

5.1. Surface skinning 39

The CGTS surface skinning method in this study is compared 40

with two previous T-spline surface skinning methods, present- 41

ed in Refs. [6, 7], both of which interpolate the given cross- 42

sections. In this section, some skinned surface results are p- 43

resented (Figs. 5 and 7-9) to demonstrate the effectiveness and 44

efficiency of CGTS surface skinning method. Moreover, statis- 45

tical data are listed in the Table 1, including the number of the 46

given cross-sections, added intermediate cross-sections, guid- 47

ing curves, data points, and control points. 48

Due to the incompatible knots of the adjacent given cross- 49

sections, there are some wiggles on the T-spline surfaces 50

(Figs. 2(e), 7(b), 8(b) and 9(b)) skinned by Nasri’s skinning 51

method. To remove the wiggles, Oh’s skinning method adds 52

one more intermediate cross-section between the given cross- 53

sections. However, some creases inevitably appear on the 54

skinned T-spline surfaces (Figs. 2(f), 7(c), 8(c) and 9(c)), which 55

cause the unfairness of the skinned surface. 56

Moreover, Nasri’s and Oh’s skinning methods do not pay at- 57

tention to the fairness of the skinned surface. And the CGTS 58

surface skinning method preserves the shape controlled by the 59

guiding curves with C2 continuity. As a result, the shape con- 60

trolled by the guiding curves is smoother than that of the oth- 61

er two methods, and the skinned T-spline surface achieve high 62

fairness. 63
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(a) (b) (c) (d)

Fig. 6. CGTS solid skinning (S shape). (a) The given cross-sectional T-spline surfaces. (b) The skinned T-spline solid with the mesh
generated from the knots. (c) Transparent skinned solid with the given surfaces. (d) Cut-away view of the skinned solid.

By introducing the guiding curves and the LSPIA method1

into the skinning, the quality of the skinned surfaces2

(Figs. 5(c), 7(d), 8(d) and 9(d)) generated by the CGTS with3

one section is better than that by Oh’s skinning method. In ad-4

dition, the number of the control points of the surface generated5

by the CGTS with one section is less than using Oh’s skinning6

method. Therefore, the skinned surfaces (Figs. 5(d), 7(e), 8(e)7

and 9(e)) generated by the CGTS with two mid-sections can8

not only remove the wiggles and creases, but also achieve high9

fairness. To show the quality of the skinned T-spline surfaces10

in detail, the results generated by the CGTS skinning method11

with two mid-sections are rendered with their own color scales,12

shown in Fig. 10.13

As we can see from Table 2, the minimum and maximum14

mean curvature values of the skinned T-spline surface are p-15

resented. The ranges of the mean curvature values of the sur-16

faces generated using Nasri’s skinning method are largest than17

the others, meaning that wiggles appear on the skinned sur-18

faces. And with Oh’s skinning method and CGTS with one19

mid-section, the ranges of the mean curvature values are com-20

parable. Significantly, the skinned surfaces generated by the21

CGTS with two mid-sections possess the largest minimum cur-22

vature value and the smallest maximum curvature value among23

the skinned surfaces, showing that the surfaces are generated24

with high quality. The largest minimum curvature value and s-25

mallest maximum curvature value in Table 2 are shown in bold.26

5.2. Solid skinning27

In this section, we describe the use of the CGTS solid skin-
ning method to generate some trivariate T-spline solids (Moai,
Tooth and Duck, shown in Figs. 11, 12 and 13, respectively).
Table 3 lists the statistics in the solid skinning. The average
scaled Jacobian value of the T-spline solid is defined as,

avg Jac =

∫ ∫ ∫
Ω

Jac(x, y, z)dxdydz∫ ∫ ∫
Ω

dxdydz
, (21)

where Jac(x, y, z) is the scaled Jacobian value [36] at (x, y, z).28

It should be noted that the weights employed in the opti-29

mization to balance the energy functions are listed in Table 3.30

Moreover, for comparison, the minimum scaled Jacobian val- 31

ues, maximum scaled Jacobian values, and average scaled Ja- 32

cobian values in the skinned T-spline solid before and after the 33

optimization, are presented in Table 3. It can be seen that the 34

minimum Jacobian values and average scaled Jacobian values 35

in the skinned T-spline solids are improved after optimization. 36

Although the Jacobian values can not be guaranteed to be al- 37

l positive in theory, the minimum Jacobian values in our im- 38

plementation are all positive. Therefore, the qualities of the 39

T-spline solids are improved after the optimization. 40

6. Conclusion 41

In this study, we have presented a CGTS surface skin- 42

ning method with high fairness to interpolate the given cross- 43

sections. The wiggles and creases appearing in the skinning 44

surfaces using Nasri’s and Oh’s skinning methods can be re- 45

moved. The introduced guiding curves in the developed method 46

provide a visually pleasing shape for the skinned surface. The 47

LSPIA method not only simplifies the iterative process in O- 48

h’s skinning method, but also ensures the fitting accuracy and 49

stability of iterations. 50

Furthermore, the CGTS skinning method is developed for the 51

field of solid modeling to generate a skinned T-spline solid that 52

interpolates the given cross-sectional T-spline surfaces. In order 53

to make sure that the trivariate T-spline solid can be simulated in 54

the framework of IGA, an optimization approach is employed 55

in the skinning, which improves the quality of the skinned T- 56

spline solid. 57
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Fig. 13. CGTS solid skinning (Duck). (a) The given cross-sectional T-spline surfaces. (b) The skinned T-spline solid with the mesh generated
from the knots. (c) Transparent skinned solid with the given surfaces. (d) Cut-away view of the skinned solid.
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